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Application of Bond-Moving Renormalization-Group 
Approach to Fractal Lattices 
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We investigate the application of the Migdal-Kadanoff bond-moving renormal- 
ization group (RG) approach to fractal lattices. We find the following two results: 
first, for inhomogeneous interaction lattice models, bond moving involving 
inequivalent bonds is unsuitable because it violates the condition < A) = 0 (A is 
the perturbation potential resulting from moving the bonds); second, the condi- 
tion < A ) =  0 does not uniquely determine the way to move bonds; different 
choices of bond moving yield different RG recursion relations and corresponding 
fixed points, which makes the conclusions concerning the phase transition quite 
uncertain. 

KEY WORDS:  Bond-moving renormalization group; phase transition; Ising 
model. 

1. I N T R O D U C T I O N  

The bond-moving renormalization group (RG) approach proposed by 
Migdal and Kadanoff is a significant real-space RG approach. (1'2) It is a 
lower bound approximation based on a variational principle which makes 
the sum of the partition function calculable and optimizes the result. It has 
been extensively applied to equilibrium systems on translational symmetry 
lattices, and in the past 10 years it has also been applied to fractal lattices 
with self-similar symmetry. 

Kadanoff (2) has analyzed the limitations and weaknesses of applying 
this approach. Besides being inaccurate, a usual defect is that when it is 
applied to d-dimensional (d~> 2) translational lattice systems with isotropic 
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interactions, the isotropic feature is lost when the RG procedure is per- 
formed in different directions. The reason is that bond moving is always 
combined with a decimation procedure in the renormalization process; 
since bond-moving and decimation procedures are noncommutative, this 
leads to the occurrence of anisotropy. Usually, to restore isotropy, a sym- 
metrized procedure has to be introduced. ~3) 

Since the 1980s much attention has been given to fractal physics. Gefen 
et al. ~4-6) studied phase transitions of Ising and Potts models on the Koch 
curve, the Sierpinski gasket, and Sierpinski carpets (SC). They introduced 
two interaction parameters K and Kw and used the bond-moving RG 
approach to investigate phase transitions on Sierpinski carpets with infinite 
ramification order: 6) This approach has since been used to study critical 
dynamics, t7) However, in a recent study we found that those investigations 
neglected some essential points of the bond-moving RG approach. In this 
paper we point out that moving potential terms from bonds to inequivalent 
bonds is unsuitable, because it violates the condition (5) given below. We 
give a detailed interpretation of this in Section 3. 

We will also see below that Eq. (5) allows us an extensive degree of 
freedom in choosing additional perturbation potentials A. Under the con- 
straint of Eq. (5) we may choose different ways of bond moving and then 
obtain different recursion relations of the renormalization group. The 
fixed points of these relations may be very different and this makes the 
conclusions concerning phase transitions quite uncertain. We treat this in 
Section 4. 

2. A BRIEF REVIEW 

First, we give a brief review of the bond-moving RG approach. 
Following Kadanoff's derivation, t2'3) suppose we have the original 
Hamiltonian H(a), and under a scale transformation a ~ 2a, carry out a 
transformation T(/~, a) from the old variables a to new ones/~, resulting in 
a new renormalized Hamiltonian H'[/~ ] 

H'(p) =In Tr~ exp[ T(g, a) + H(tr) ], (1) 

where T(p, tr) is constrained by the condition 

Tr, exp T(/I, tr) = 1 (2) 

so that the partition function of the system is left invariant: 

Z[H(a)] = Z[H'( / t ) ]  (3) 
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We now introduce an approximate renormalized Hamiltonian 

H~(#)  = In Tr~ exp[ T(#, a) + H(a) + ,4(#, a) ] (4) 

where A(#, a) is chosen in terms of a variational method so that the sum 
is calculable. Kadanoff found that under the conditions 

(a) Tr ,  exp[ T(#, tr) + H(a) ]  is a sum with positive-semidefine weights 

(b) A(#, tr) is real and small (5) 

(c) Tr~, Traexp[T(#,~)+ H(tr)] A(#,tr)=O; i.e., <A> =O 

where < ,4 > represents a statistical average of the function ,4, the free energy 
of the system satisfies the following relation: 

F[ H'A] <<. F[ H'] = F [ H ]  (6) 

A simple choice for '4 is 

"4(#, a) = ~ c~.aT(#, a) (7) 

where aT(#, tr) denotes a local coupling term (e.g., tritTi+ 1) and c7 is inde- 
pendent of/ t  and a, and we impose the condition that for all 0~ 

c7 = 0 (8) 
i 

For this choice, we find that Eq. (5) certainly holds. The condition (8) has 
a simple geometrical interpretation: The variational principle allows us to 
move potential terms (coupling terms) from a set of bonds in the lattice to 
equivalent bonds, but not to increase or decrease the total amount of any 
type of bond. This is the theoretical basis of the bond-moving RG, which 
implies that "bond moving" refers specifically to moving with <'4 ) = 0. 

3. INHOMOGENEOUS INTERACTION MODEL ON 
FRACTAL LATTICE 

Let us start from an inhomogeneous interaction Ising model on the 
Sierpinski carpet; we write the model Hamiltonian a s  (6) 

- H  
k s T = K E  a,ag+ Kw E a;czj (9) 

n . n .  n . n .  
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Fig. 1. A scheme for a bond-moving renormalization-group transformation on the Sierpinski 
carpet, (a) A K-bond and a Kw-bond; arrows denote directions of movement. (b, c) Results 
moving bonds along line AB. (d) Renormalized K' and K'w bonds via decimation procedure. 

where K =  J/KBT (Ks is the Boltzmann constant and T is the temperature) 
denotes the interaction via a bond which separates two noneliminated sub- 
squares, and K w = J w / K B T  is the coupling via a bond which borders 
an eliminated subsquare. We have a i - a ;  at the intersection of a K-bond 
and a Kw-bond.  To work out the renormalization group transformation, 
a bond-moving RG scheme has been performed ~6~ (see Fig. 1) and a set of 
coupled RG recursion relations obtained. 

It  is worth noting that in the bond-moving scheme shown in Fig. 1 there 
are two kinds of bond moving, i.e., moves of a K (Kw) bond from one 
place to a K (Kw) bond at another place, and moves of a Kw (K) bond 
from one place to a K (Kw) bond at another place (see that below); the 
latter is bond moving between inequivalent bonds. We see, for example, 
that two K-bonds between spins a I and a~ and between spins a 2 and a 2 are 

0 and a ~ where there was a K-bond originally moved to between spins a~ 2, 
(bond moving between equivalent bonds), while two Kw-bonds  between 

2 1 and a I and between spins a2 z and a 3 are moved to between spins spins 0 2 3 
0 and a ~ where there was a K-bond originally (bond moving between a2 

inequivalent bonds). Corresponding to these bond movings we can write 
the corresponding terms included in an additional perturbation function A; 

0 0 0 0 1 1 they are (2Kala 2 Ka la~-Ka~a  2) and - -Kwa2a3).  (2Kwa2a3_Kwa2a3 2 2 
Immediately we can calculate their contribution to ( A )  as follows: 

- -  H / K  B T 0 0 E e (2Kala 2 _ _  1 1 2 2 Kataa--Kala2) = 0  (10) 
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They represent the contributions of two typical bond-moving terms. The 
difference in the results (10) and (11) comes from the fact that there is 
exchange symmetry between equivalent bonds, while there is none between 
inequivalent bonds. In more detail, there are terms 

' + K a ~ )  + (K~~ ~ + i , + KwG2a~) ( Ka~ a~ + Ka  ] a 2 Kw~72~73 

in the Hamiltonian H; obviously, in the last parentheses the exchange 
between K and K w  is asymmetric. Consequently, we obtain that in an 
inhomogeneous interaction lattice model, bond moving between 
inequivalent bonds must lead to (A)  # 0, i.e., violation of the condition 
(A)  = 0. Therefore bond moving between inequivalent bonds is unsuitable 
within the scheme discussed by Kadanoff. 

4. D I F F E R E N T  W A Y S  OF M O V I N G  B O N D S  

As we mentioned above, the condition (zl)  = 0 can be simply realized 
in the bond-moving scheme. However, this condition does not uniquely 
determine the way to move bonds, because it leaves extensive r o o m  for the 
choice of the function zl. In other words, there are various choices for the 
specific form of bond moving even for a homogeneous interaction lattice 
model. Moreover, we may move not only integer numbers of bonds, but 
also fractional numbers of bonds. That makes the results of the renor- 
malization group quite different and may even lead to completely opposite 
conclusions concerning the phase transition of the system. 

Let us investigate the phase transition of the Ising model with only 
nearest neighbor interactions on the Sierpinski gasket, which has also been 
studied by Gefen et al. ~5~ We find that when we choose different ways of 
moving bonds to treat the same object we end up with different or even 
contradictory results. 

In Fig. 2 we perform Ising bond moving: the bond connecting spins 0 3 
and a5 is moved to between spins tr~ and 0 2 with strength o~K and between 
spins a2 and tr4 with strength (1-o~)K; o~ can vary continuously within 
0 ~< ~ ~< 1. The bonds between spins tr 2 and 0" 3 and between spins a2 and tr 5 

822/88/5-6-27 
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Fig. 2. A scheme for a bond-moving renormalization-group transformation on the Sierpinski 
gasket. (a) For example, a K-bond between a3 and a5 is moved to between a~ and r 2 with 
strength c~K and between a2 and cr 4 with strength (1 - ~ ) K ;  arrows denote directions of move- 
ment. (b) Result of bond moving. (c) Renormalized K'-bond via decimation procedure. 

are also moved similarly. The additional perturbation function A is then 
written as 

zJ = [o~Ko'l o" 2 n t- (1 - ~ )  Ko'2 o" 4 - K a 3 a 5 ]  

+ [ o~Ko'3 o" 6 + (1 -0~)  Ko-I o" 3 -Ka2ers] 

-4- [ o~Ko'40" 5 q- ( 1 - 0~) Ko'5 o" 6 - Ko-20"3 ] (12)  

It is easy to prove that ( d )  = 0 is satisfied. 
After following a decimation procedure, we obtain the RG recursion 

relation as 

tanh K' = tanh(2 - e ) K  tanh( 1 + ~ ) K  (13) 
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To determine the critical point of the phase transition, we have to find 
fixed points of the RG recursion relation. In the following we list all the 
fixed points for special choices of ~: 

/K* =0,  0% 0~=0, 

K * = 0 ,  0.675975, 0% ~ = 1 / 2  

K * = 0 ,  0.75109, 0o, ~ = 3 / 4  (14) 

K * = 0 ,  1.73201, oo, a=0 .99  

K*=O,  ~ ,  a = l  

Obviously, when ~ = 0, 1 only trivial fixed points exist and thus no finite- 
temperature phase transition occurs in the Sierpinski gasket, which agrees 
with the known exact result. 15) However, when 0~#0, 1 nontrivial fixed 
points occur, which implies the existence of a finite-temperature phase 
transition, with a critical temperature which depends on the value of oc. 
From the above we come to the following conclusion: the existence of a 
phase transition of the Ising model on the Sierpinski gasket lattice depends 
on the choice of how the bonds are moved. Obviously this is inconsistent 
with real phenomena in nature. However, it is the logical consequence of 
the bond-moving RG approach. 

As we mentioned before, the bond-moving approach is a lower bound 
approximation of the free energy; thus a "best" choice of the perturbation 
potential A is to make the approximate free energy F~ a maximum by 
varying the free parameter ~. We have found that the best one corresponds 
to oc = 1/2, which implies the occurrence of a phase transition at a finite 
temperature, inconsistent with the exact RG result. (5) 

In the following we perform an unusual way of moving bonds on 
the square lattice, which derives a quite different RG recursion relation. 
Figure 3 shows such a bond-moving RG process. The K-bond between a~ 
and 0 2 and that between 0 2 and a3 are both moved to between 0" 7 and 0"8, 
for example. The RG recursion relations are given by 

tanh K~v = tanh K tanh 3K 

tanh K'r = tanh[ 2( tanh-  l tanh 2 K] 
(15) 

in contrast to the results of ref. 3. However, it is easy to prove that the 
"best" choice of bond moving is the homogeneous scheme used in ref. 3. 
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Fig. 3. An unusual scheme for a bond-moving renormalization-group transformation on the 
square lattice. (a) For example, K-bonds between at and a ,  and between a2 and a3 are moved 
to between a7 and as;  arrows denote directions of movement. (b) Result of bond-moving. 
(c) Resulting Kl-bond via decimation, then movement of Ki-bond. (d) Renormalized K'y-bonds. 
(e) Renormalized K',.-bonds. 



Bond-Moving RG Approach to Fractal Latt ices 1417 

5. CONCLUSION AND DISCUSSION 

We have investigated in detail the application of the bond-moving 
renormalization group to fractal lattices. Our main findings indicate two 
aspects which have been neglected before: 

First, for an inhomogeneous interaction lattice model, only bond 
moving between equivalent bonds is suitable; otherwise, the process will 
violate the condition ( A )  = 0. In fact, for systems with inequivalent bonds 
such as the Sierpinski carpet, the previously used RG bond-moving scheme 
does not obey Kadanoff's condition ( A )  = 0. 

Second, under the constraint condition ( A )  = 0, the choice of bond- 
moving scheme is arbitrary; in other words, we may have different ways to 
move bonds without violating ( A )  = 0. Because of this, we may find com- 
pletely different RG recursion relations, depending on the different choices 
of bond-moving schemes, which makes any conclusion concerning the 
phase transition quite uncertain. Therefore the scheme is generally not very 
reliable. 

Furthermore, we may in principle choose the additional perturbation 
function A which may not correspond to any simple geometrical interpreta- 
tion, as long as ( A )  = 0 holds and the sum of the partition function is 
calculable. Such a choice seems very complicated and difficult to find; we 
do not know if there is such a choice. 

Kadanoff already pointed out some difficulties and problems with the 
bond-moving RG approach and explained their causes. However, when it 
is applied to fractal lattices, some new difficulties emerge, as mentioned 
here. Of course, our findings are also applicable to translational symmetry 
lattices and other network structures. 

Finally, we would like to stress that the bond-moving RG approach is 
not a good one; its results and conclusions have only limited value at best. 
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